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Abstract

A non-associated plasticity theory for granular materials has been developed in Part 1 based on the concept of a
characteristic stress state of vanishing incremental dilation. The model is fully three-dimensional and is de®ned by
six material parameters: two for elastic sti�ness, one for plastic sti�ness, two for the shapes of yield and plastic

potential surfaces and one for the dilation at failure. In this paper a calibration procedure is developed using test
data only from a standard triaxial test. It is found that the shape parameter for the yield surface can be estimated
from the plastic ¯ow parameters, thus reducing the number of free parameters to ®ve. Calibration examples are

shown, as well as predictions made, for di�erent con®ning stress levels and constant volume tests on sand. The
model is found to represent stress±strain behaviour and development of volumetric strain in standard triaxial tests
well. The model provides good predictions of constant volume behaviour of dense as well as loose sand on the basis

of calibration by standard triaxial test data. A simple explicit formula is derived for the failure asymptote in
constant volume testing, enabling explicit adjustment of the parameters, if incompressible test data is
available. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is a characteristic of granular materials that the relative motion between the grains leads to
irrecoverable deformation, and this suggests the use of plasticity theory as a theoretical framework for
the mechanical behaviour of dense granular media. When intergranular friction is the dominating
mechanism of deformation, it appears necessary to introduce a non-associated ¯ow rule. Thus, a
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plasticity theory suitable for granular materials will include a yield surface, a ¯ow potential, a hardening
rule and some representation of elastic deformation. Ideally these properties should be derived from the
micromechanical behaviour of the material, but at the present stage most of the properties of a
macroscopic elasto-plastic theory for granular materials must be developed on a phenomenological
basis.

A notable contribution to the development of constitutive models for granular materials was made by
the single hardening model of Lade and Kim (1995). This model makes use of a yield function and a
¯ow potential containing the third stress invariant, hardening and softening rules involving exponentials
and non-linear power law elastic relations. In total the model requires 12 material parameters and an
independent investigation by Andersen et al. (1997) indicates that proper calibration of the model is
essential for its accuracy.

In Part 1 of this study an alternative, somewhat simpler, plasticity theory for friction dominated
granular media was developed (Krenk, 1999). The complexity of this model is deliberately reduced to
the absolute minimum required to represent a number of essential features. The model appears as a
generalization of the classical Cam±Clay model in which a critical surface separates dilative and
contractive behaviour (Scho®eld and Wroth, 1968). In the present model a distinction is made between
the characteristic state separating dilative and contractive behaviour, and the ultimate state typically
associated with dilation. The model is given representative triaxial features by using a surface format for
the yield function and the ¯ow potential that ®ts smoothly into the compression octant of principal
stress space (Krenk, 1996). This format is similar to that of Lade and Kim (1995), but in the present
theory the shape of the ¯ow potential is derived from a consistent friction hypothesis, closely resembling
a generalized Coulomb friction theory (Krenk, 1998). The hardening is governed by weighted plastic
work, in which the work of the deviatoric strains is given a small weight. The elastic theory is
deliberately kept in the simple form of the original Cam±Clay theory, i.e. constant shear modulus and
tangent bulk modulus proportional to current mean stress. This is justi®ed by the results of the theory,
that show little improvement by introducing a more general power law, and also by the simplicity of the
relations used in the calibration of the theory as shown in the following.

The resulting theory only involves six parameters, two for shape of yield surface and ¯ow potential,
one for dilation at failure, and three sti�ness parameters. The present paper deals with the
determination of these parameters from standard triaxial test data. In spite of the rather small number
of parameters, it turns out that data from a standard triaxial test will leave two of the parameters nearly
linearly dependent. This permits a reduction of the number of parameters to be calibrated, to ®ve. A
detailed analysis of the model predictions of a constant volume triaxial test demonstrates how
supplementary data from such a test can be used to calibrate all six parameters.

The present model captures the essential features of granular materials, as evidenced in triaxial tests,
qualitatively as well as quantitatively. In particular the development of volume strain is predicted well.
In the concluding part a possible use of an improved elasticity representation and dependence of elastic
properties on plastic deformation is discussed.

2. Basic parameters and strategy

2.1. Yield surface and plastic potential

The characteristic state plasticity model developed in Part 1 is formulated in terms of a family of yield
surfaces in the form
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f�sss� � ÿJ3 � pJ2 ÿ g2f �p�p3 � 0 �1�
where sss is the stress tensor, J2, J3 are the second and third deviatoric stress invariants, and p is the
mean stress. Compression is considered positive. The shape of the yield surface de®ned by Eq. (1) is
speci®ed via the function gf�p�: A closed surface with drop shape that ®ts into the compression octant in
principal stress space is obtained by selecting the function as

gf�p� 2� 1ÿ
�
p

pf

�m

�2�

where p � pf is the intersection with the hydrostatic axis in stress space, and m controls the width of the
surface. A typical yield surface is shown in Fig. 1(a).

The plastic potential is assumed to be associated in the deviatoric stress plane, leading to a similar
functional form of the ¯ow potential,

g�sss� � ÿJ3 � pJ2 ÿ g2g �p�p3 �3�

The shape of the ¯ow potential surfaces is determined by the function gg�p�, and an approximate friction
hypothesis proposed in Part 1 leads to the form

gg�p� � 1ÿ
�
p

pg

�n

�4�

A typical ¯ow potential surface is shown in Fig. 1(b). The parameter 2n represents the intergranular
coe�cient of friction. It is important to note the di�erence in shape, caused by the power two in the
de®nition of gf�p�: In the following it is convenient to use the notation Z � 1ÿ g2:

Most experimental data is available as results from standard triaxial tests, using a cylindrical test
specimen. The test starts by establishing a state of isotropic stress s1 � s2 � s3 and then the axial stress
component s1 is increased, while the transverse components s2 � s3 are kept constant. The following

Fig. 1. Principal stress space: a) yield surface, b) ¯ow potential.
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calibration procedure is based on this type of data. For convenience a two-dimensional stress space
representation is used with mean stress and stress di�erence de®ned as

p � 1

3
s1 � 2

3
s3, q � s1 ÿ s3 �5�

In terms of the stress components �p, q� the yield surface and ¯ow potential are

f�p, q� � ÿ 2

27
q3 � 1

3
q2pÿ g2f �p�p3 �6�

g�p, q� � ÿ 2

27
q3 � 1

3
q2pÿ g2g �p�p3 �7�

In this notation q > 0 corresponds to triaxial compression and q < 0 to triaxial tension.

2.2. Elastic relations

The strain components corresponding to the stress components �p, q� are

ev � e1 � 2e3 eq � 2

3
�e1 ÿ e3 � �8�

The incremental elasticity relation is assumed to be isotropic,�
dev

deq

�
�
"
K ÿ1e

�3G�ÿ1

#�
dp
dq

�
�9�

where Ke is the tangent elastic bulk modulus, and G is the tangent elastic shear modulus. The elements
of the tangent ¯exibility matrix in the incremental elasticity relation Eq. (9) are the second partial
derivatives of the complementary elastic energy density.

Several authors have used power laws to describe the dependence of the elastic properties on the
current state of stress. A common procedure, described e.g. by Lade and Nelson (1987), is to assume
that the complementary elastic energy is a power function of the isotropic stress invariant

Ib � 1

2
p2 � bJ2 � 1

2
p2 � 1

3
bq2 �10�

where b is a material parameter, specifying the Poisson ratio. It is easily veri®ed by di�erentiation that if
the complementary elastic energy is a non-linear function Uc�Ib�, the secant ¯exibility is isotropic, while
further di�erentiation leads to coupling terms in the tangent ¯exibility. Thus, the assumption of a
complementary elastic energy in the form Uc�Ib� implies stress dependent anisotropy of the tangent
sti�ness. The sti�ness relations corresponding to an arbitrary complementary energy function Uc�Ib� are
easily calculated, but in the present ``minimal model'' an uncoupled form with constant shear modulus
G and tangent elastic bulk modulus

Ke � p

k
�11�

has been selected. There are two reasons for this choice. First, the elastic parameters are expected to
depend on the state of the material, including e.g. changes in pore volume due to plastic straining. This
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e�ect is not captured by introducing a power law format in accordance with Eq. (10). Secondly, the
uncoupled format Eq. (9) leads to simple explicit results for the direction of the initial strain increment
of a standard triaxial test and for the ratio of the stresses in a constant volume test. As demonstrated
below, these results are quite useful in the calibration procedure and the accuracy of the results indicate
the practical usefulness of the model in its present form.

2.3. Hardening rule

The direction of the plastic strain increments is given by the gradient of the ¯ow potential, while the
magnitude is determined implicitly by a multiplier dw,�

dep
v

dep
q

�
� dw

�
@g=@p
@g=@q

�
�12�

The hardening parameter H � @ f=@w determines the change of the yield function per unit change of the
plastic multiplier w: In the present model the change of the yield function is determined by the size
parameter pf and thus

H � ÿ @f
@pf

dpf

dw
� H1H2 �13�

The factor H1 follows from di�erentiation of the yield function Eq. (6), using the particular form Eq.
(2) of the shape function gf�p�2:

H1 � ÿ @ f
@pf

� mp2
ÿ
1ÿ g2f

��m�1�=m �14�

where the value of g 2f is expressed in terms of the current stress state by use of the yield condition Eq.
(6).

It is convenient to specify the plastic hardening with reference to isotropic compression. The total
strain is the sum of an elastic and plastic part, and thus in isotropic compression the following relations
de®ne the elastic, plastic and elasto-plastic bulk moduli Ke, Kp and Kep,

dee
v

dp
� dep

v

dp
� dev

dp

1

Ke

� 1

Kp

� 1

Kep

�15�

The elasto-plastic bulk modulus Kep is assumed in the form

Kep � p

l
�16�

similar to Eq. (11) with the non-dimensional elasto-plastic ¯exibility parameter l:
A suitable hardening rule is obtained by generalizing the isotropic elasto-plastic compression relation

dpf � dp � Kpdep
v �17�

A contribution of the work via the plastic deviatoric strains with weight w is added and after
introducing the plastic strain increments from Eq. (12), the hardening factorH2 is obtained in the form

H2 � dpf

dw
� Kp

�
@g

@p
� w

q

p

@g

@q

�
�18�
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The non-dimensional weight w controls the dilation in the ultimate state, where H2 � 0:In the present p,
q format the incremental elasto-plastic sti�ness equations take the following matrix form

�
dp
dq

�
�

0BBB@
�
Ke

3G

�
ÿ

�
Ke@g=@p
3G@g=@q

��
Ke
@f

@p
, 3G

@ f

@q

�
H� @g

@p
Ke
@ f

@p
� @g
@q

3G
@f

@q

1CCCA
�

dev

deq

�
�19�

These equations are used to calibrate the model from triaxial test data.

2.4. Calibration strategy

The model requires only six parameters: elastic sti�nesses G and k, elasto-plastic sti�ness l, exponents
m and n de®ning the shape of the yield and plastic potential surfaces and the non-dimensional weight
parameter w for the dilation at failure. In the calibration procedure it is convenient to represent the
shape parameters m and n by the stress ratios �q=p�f �Mf and �q=p�c �Mc, representing the point of
maximum width of the yield surface and potential surface, respectively. As shown in Part 1, the yield
surface exponent m can be evaluated as

m � 6M2
f

�3ÿMf ��3� 2Mf � �20�

and the ¯ow potential exponent n can be evaluated from

n � 1

9

M2
c �3ÿMc�
gc

ÿ
1ÿ gc

� g2c �
1

3
M2

c

�
1ÿ 2

9
Mc

�
�21�

The parameter w is related to the behaviour at the ultimate state, corresponding to the stress ratio
�q=p�u �Mu:

Fig. 2 shows typical results of a triaxial test on sand in the form of plots of the stress ratio q=p and
the volumetric strain ev vs. the shear strain eq: Typically the volumetric strain curve starts out at a ®nite

Fig. 2. Normalized stress and volumetric strain vs. shear strain.
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positive slope corresponding to compaction, passes through a maximum at the characteristic state, and
then turns into dilation. Characteristic features of the �ev, eq� curve are: the initial slope �dev=deq�0, the
location �ec

v, e
c
q� of the maximum, and the slope �dev=deq�u and position of the ®nal part of the dilation

curve. The stress curve shows directly the characteristic stress ratio Mc, corresponding to ec
q determined

from the strain curve, and the ultimate stress ratio Mu, corresponding to the maximum of the curve.
These curves suggest that the parameters Mc and Mu are determined ®rst, while the sti�ness parameters
are determined to match the initial slopes of the stress±strain curves and the location of the ®nal, nearly
linear, part of the dilation curve.

In this process there is no direct means of determining the yield surface parameterMf , which turns out
to be nearly linearly dependent of the elastic ¯exibility k: Results on measured yield surfaces and
analysis of several di�erent data sets suggest thatMf can be estimated from the parameters Mc and Mu,
whereby only ®ve material parameters are estimated directly from the test data.

3. The shape parameters Mc, Mu and Mf

The shape parameters Mc, Mu and Mf specify the plastic e�ects in model. When plastic strains are
assumed to dominate around the characteristic and ultimate states, the characteristic and ultimate state
lines Mc and Mu can be determined directly from the experimental data curves. The yield function
parameter is then estimated from the parameters Mc and Mu:

3.1. Characteristic state parameter Mc

At the characteristic state the volumetric strain increment vanishes, dev � 0: The corresponding value
of the strain ec

q can be read directly from a graph like Fig. 2 of the volumetric strain, and the
corresponding stress ratio �q=p�c determines Mc: In the theory the term ``characteristic state'' has been
used to denote the state in which the plastic volumetric strain increment vanishes, i.e. dep

v � 0: It is
assumed that the plastic strains dominate around the characteristic state and that no correction is
therefore needed. This assumption is con®rmed by the analysis of experimental data for sand presented
in Sections 5 and 6. When Mc has been obtained from the data, the exponent n is calculated from Eq.
(21).

3.2. Ultimate state parameter Mu

In the ultimate state the hardening parameter H � H1H2 vanishes. When the ultimate stress ratio Mu

is inserted into the expression (18) for the factor H2 an expression for the parameter w in terms of Mu is
obtained

w � ÿp
q

@g=@p

@g=@q
� 1ÿ n�Mc �

n�Mu� �22�

where n(M ) denotes the value of n given by Eq. (21) for the stress ratio M. n�Mc� is the ¯ow potential
exponent already calculated from the characteristic state parameter Mc:

The condition (22) also determines the ratio between the plastic strain increments at the ultimate
state, when introducing the plastic strain increment relation (12).

dep
v

dep
q

�����
u

� ÿwMu �23�
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Thus, the parameter w is seen to play a double role in de®ning the ultimate stress ratio �q=p�u �Mu and
the plastic strain ratio �dep

v=de
p
q�u in the ultimate state.

In practice calibration based on the ultimate plastic strain ratio turns out to be considerably more
robust and reliable than reading Mu directly from the stress data. Thus, the stress ratio Mu is calculated
by solving the nonlinear equation

Mu

�
1ÿ n�Mc�

n�Mu�
�
� ÿdev

deq

����
u

�24�

obtained by combining Eqs. (22) and (23). Again it is assumed that the slope of the total strain curve is
representative of the plastic strains.

3.3. Yield surface shape parameter Mf

The parameter Mf , controlling the shape of the yield surface, is not directly observable in a single
triaxial test. The shape of the yield surface is di�cult to measure, because any elasto-plastic loading
changes the location of the yield surface. The procedure therefore is to introduce elastic unloading from
a point on the yield surface, move to a di�erent point inside the yield surface and reload to a new
intersection with the yield surface. This procedure produces pairs of stress points on each yield surface.
The results of such an experiment on sand by Andersen et al. (1997) are shown in Fig. 3. The ®gure
shows the direction of estimated plastic strain and corresponding segments of the yield surface. It is seen
how the direction of the plastic strain increment vector �dep

v, dep
q� turns to the left for stress locations

with increasing ratio M � q=p: The vertical direction of the strain increment identi®es the characteristic
state Mc � �q=p�c: It is seen that around the characteristic state, where the ¯ow potential has a
horizontal tangent, the tangent to the yield surface has an upward slope. The parameters Mc and Mf

represent the slope of a line connecting origo with the maximum of the ¯ow potential and the yield
surface, respectively, and thus the ®gure indicates that Mf <Mc:

The precise value of Mf is di�cult to estimate from the data of standard triaxial tests. The reason is
illustrated in Figs. 4 and 5 showing test data of loose Baskarp sand with void ratio e � 0:85 and initial
hydrostatic stress p0 � 985 kPa. The test data are well represented by the present model with parameters
Mf � 1:00, k � 7:5� 10ÿ3 and the other parameters as given in Table 1. Fig. 4 shows the e�ect of

Fig. 3. Direction of plastic strain increments �dep
v, dep

q� for Baskarp Sand (Andersen et al., 1997).
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increasing and decreasing the parameter k with 210ÿ3: There is virtually no e�ect on the stress curve,
while a decrease of k moves the dilative part of the strain curve upward. Precisely the same e�ect can be
obtained by keeping the original value k � 7:5� 10ÿ3 ®xed, while changing the value of Mf by 20:05
as shown in Fig. 5. Thus, if the parameters Mf and k in the present case are changed such that
DMf ' ÿ50Dk, there would be no detectable change in the representation of the triaxial test data. A
robust calibration procedure must therefore estimate one of the parameters Mf or k independently, or
include additional data, e.g. from a constant volume test as discussed in Section 6.

Analysis of several data sets for sand has indicated that Mf can be estimated from two requirements.
For loose packing Mu is close to Mc and this also seems to imply that Mf is close to Mc: In addition the
magnitude Mf must be limited e.g. by Mf < 1, in order to lead to suitable ¯exibility parameters k and l:
A simple estimate for Mf in accordance with these requirements is

Mf � min �1, 2Mc ÿMu� �25�
This relation has been used in the model calibrations in Sections 5 and 6. In Section 6 is demonstrated

Fig. 4. Variation of the �eq, ev� curve with k:

Fig. 5. Variation of the �eq, ev� curve with Mf :
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how the elastic ¯exibility parameter k can be evaluated independently from incompressible triaxial test
data.

4. The sti�ness parameters k, l and G

Three conditions are needed to determine the sti�ness parameters k, l and G. Two equations are
obtained by matching the initial elasto-plastic sti�ness, i.e. the slope of the stress±strain curves at q � 0:
In the present model the elasto-plastic volumetric and shear sti�ness for the ®rst load increment from an
isotropic stress state can be evaluated explicitly, as shown below. The ®nal condition is the position of
the asymptote of the �ev, eq� curve. This is the only condition that requires integration of the incremental
elasto-plastic stress±strain relations (Eq. (19)).

4.1. Initial elasto-plastic sti�ness

In the present theory it is assumed that the yield function f �sss� is smooth, while it follows from the
friction hypothesis of Part 1 that the ¯ow potential has an apex at the hydrostatic axis. These two
properties, illustrated in Fig. 6, lead to simple analytical expressions for the strain increments at the ®rst
deviation from hydrostatic stress. In the hydrostatic part of the test the plastic strains are a combination
of contributions along the normals to the plastic potential at the apex, leading to hydrostatic
compression during hardening, according to the argument in Krenk (1998).

At the hydrostatic axis q � 0, and as seen from Fig. 6 symmetry and the smooth variation of the yield
function imply @ f=@q � 0: These conditions lead to particularly simple expressions for the hardening
parameters H1 and H2 on the hydrostatic axis, namely

H1 � ÿ @ f
@pf

� @ f

@p
H2 � Kp

@g

@p
�26�

Table 1

Material parameters for loose Baskarp sand, e � 0:85

p0 (kPa) G (MPa) k� 103 l� 102 Mc Mu Mf

640 12.0 5.59 1.13 1.201 1.247 1.0

800 12.9 6.03 1.21 1.209 1.252 1.0

985 13.7 7.36 1.37 1.210 1.245 1.0

mean 12.9 6.33 1.24 1.207 1.248 1.0

Fig. 6. Flow potential g( p, q ) and yield surface f( p, q ) at hydrostatic axis.
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When these conditions are inserted into the elasto-plastic stress increment formula (19), the following
much simpler form is obtained

�
dp
dq

�
�

264Kep 0

@g=@q

@g=@p

3G

Kp

Kep 3G

375� dev

deq

�
�27�

It is clearly seen from this relation, that the apex of the ¯ow potential leads to a coupling between
volumetric and shear behaviour right from the start of a triaxial test.

The magnitude of the coupling is determined by the angle at the apex. The ratio between the two
partial derivatives at q � 0 is determined by expanding the potential g( p, q ) around the point �pg, 0). In
this expansion p � pg � Dp, and

gg�p� �
"
1ÿ

�
pg � Dp

pg

�n
#
' ÿnDp

pg

�28�

When this expansion is inserted into the ¯ow potential Eq. (7), the following equation is obtained

g�p, q� ' ÿ 2

27
q3 � 1

3
q2pÿ

�
n
Dp
pg

�2

p3 � 0 �29�

Retaining only quadratic terms in q and Dp gives the direction of the constant potential curve at �pg, 0�
as

q � ÿ
���
3
p

nDp �30�
This direction determines the ratio

@g=@q

@g=@p

����
q�0
� ÿDp

q

����
q�0
� 1���

3
p

n
�31�

This gives a simpli®ed form of the initial stress increment formula (27) for the particular form of the
¯ow potential,

�
dp
dq

�
�

2664
Kep 0

ÿ
���
3
p

G

nKp

Kep 3G

3775� dev

deq

�
�32�

It is seen that the relative magnitude of the coupling term is determined by � ���
3
p

nKp�ÿ1:
In a standard triaxial test the non-isotropic stress increments satisfy the relation dq � 3dp: Thus, the

initial non-isotropic strain increments are given by

dev

dp
�
�

1

Ke

� 1

Kp

�
� 1

Kep

�33a�

deq

dq
� 1

3

�
1

G
� 1

Kp

1���
3
p

n

�
�33b�
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It is seen that the e�ect of the apex of the ¯ow potential is to produce a plastic contribution to the shear
strain increment deq: Test data like Fig. 3, e.g. from Borup and Hedegaard (1995) and Ibsen and
Jakobsen (1996), support the existence of a plastic strain contribution to eq right from the start of the
non-isotropic part of the test.

The relation (33a) determines the parameter l explicitly, while the relation (33b) is used to calculate G
from an assumed value of k:

4.2. Elastic sti�ness parameter k

The remaining elastic sti�ness parameter k is determined by ®tting the ®nal, almost linear, part of the
dilation curve �eq, ev�: It is seen from Fig. 4(b), that changes in k leads to a parallel shift of the ®nal part
of the dilation curve. This shift is only moderately a�ected by the shear modulus and thus correction of
k followed by recalculation of G from Eq. (33b) rapidly leads to convergence.

5. Analysis of standard triaxial tests on sand

The ability of the model to represent standard triaxial test data has been investigated for loose and
dense sand, tested at various initial mean stress levels. The experiments were conducted on loose
Baskarp sand with void ratio e � 0:85 (Borup and Hedegaard, 1995) and dense Lund sand with void
ratio e � 0:57 (Ibsen and Jakobsen, 1996). The height of the test specimens was equal to the diameter,
thus preventing localized failure near the peak load.

The results for loose sand are shown in Fig. 7 and the parameter values are given in Table 1. The top
part of the ®gure shows the theoretical results obtained by calibrating the parameters for each of the
three tests. The ®t is seen to be excellent. The characteristic state parameter Mc ' 1:2 with minimal
variation. The ultimate state parameter Mu ' 1:25 is only slightly larger, indicating small additional
capacity beyond the characteristic state for loose materials. Also Mu shows very little dependence on
initial stress p0: The yield surface parameterMf � 1 is determined by the restriction on magnitude due to
the closeness of Mc and Mu: There is a somewhat larger change in the sti�ness parameters, in particular
the elastic bulk parameter k:

The lower part of Fig. 7 shows the theoretical predictions when using one common set of mean value
parameters for all three tests. The stress results are still very good, but the use of a common value for k
reduces the experimentally obtained di�erence between the dilation curves. The results are still quite
acceptable from an application point of view. However, the parameters indicate that the shear modulus
G should increase slightly with mean stress, while increase of bulk sti�ness with mean stress should be
somewhat less than linear.

Table 2

Material parameters for dense Lund sand, e � 0:57

p0 (kPa) G (MPa) k� 103 l� 103 Mc Mu Mf

40 15.2 2.50 3.16 1.17 1.57 0.77

80 24.3 2.33 3.53 1.22 1.60 0.84

160 21.0 5.92 6.63 1.16 1.53 0.79

320 28.1 5.66 6.96 1.11 1.43 0.79

640 47.3 6.09 7.59 1.13 1.39 0.87

mean 27.2 4.50 5.57 1.16 1.50 0.82
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The results for dense sand are shown in Fig. 8 with the corresponding parameters given in Table 2.
The range of the initial mean stress level p0 is much larger than the variation of the parameter values.
Also in this case the ®t based on individual calibration of each test is excellent. The characteristic state
parameter Mc is still around 1.2, but typically for a dense material the ultimate state parameter Mu is
now somewhat higher, around 1.5. This implies that the yield parameter Mf is now determined by the
relation Mf � 2Mc ÿMu: Also in this case it is clear that the shear modulus G shows an increase with
mean pressure level, while the increase in bulk sti�ness with mean stress is less than linear. It is
interesting to observe that calibration of the weight parameter w in the hardening rule from the
individual dilation curves in the upper part of Fig. 8 leads to correct di�erentiation of the ultimate stress
parameter Mu for the individual tests, although a perfect ®t is not obtained.

6. Prediction of constant volume behaviour of sand

The previous section demonstrated the ability of the model to represent the results of standard triaxial
tests. This is a prerequisite for ability to predict the stress±strain behaviour under di�erent types of
loading. Experimental data is available for standard (drained) well as constant volume (undrained)

Fig. 7. Theoretical and experimental stress ratio and volumetric strain, loose Baskarp sand. Individual calibration (top) and mean

values (bottom).
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triaxial tests on loose and dense Sacramento river sand (Lee and Seed, 1967a, 1967b). The length of the

test specimens was greater than the diameter and the behaviour after reaching the maximum stress may,

therefore, be in¯uenced by localized failures not accounted for in the theory. Experimental and

theoretical results for standard triaxial tests are shown in Fig. 9, and the corresponding parameters are

given in Tables 3 and 4. For loose sand only the curve with p0 � 0:44 MPa shows dilation, and for the

Fig. 8. Theoretical and experimental stress ratio and volumetric strain, dense Lund sand. Individual calibration (top) and mean

values (bottom).

Table 3

Material parameters for loose Sacramento sand,e � 0:87

p0 (MPa) G (MPa) k� 103 l� 102 Mc Mu Mf

0.44 11.5 0.43 0.64 1.35 1.36 1.0

1.24 43.7 0.64 2.41 1.33 1.33 1.0

1.96 61.8 1.39 3.58 1.38 1.38 1.0

3.93 108.2 6.63 5.78 1.37 1.37 1.0

mean 56.3 4.30 5.70 1.35 1.36 1.0

A. Ahadi, S. Krenk / International Journal of Solids and Structures 37 (2000) 6361±63806374



other curves Mu �Mc has been used. The high value of Mc around 1.35 for both loose and dense sand
leads to Mf � 1:0 in all cases.

The mean parameter values from Tables 3 and 4 are now used to predict the stress path in the
constant volume tests carried out by Lee and Seed (1967b). The results are shown in Figs. 10 and 11.
The agreement is seen to be very good over the full range in spite of the fact that mean parameters were
used. A similar comparison between these experimental data and theoretical predictions was made by
Lade and Kim (1995). It is remarkable that the present simpler model seems to capture the ®rst curved
part better for the loose sand. This part of the curve is strongly dependent on the shape of the plastic
¯ow potential and the results support the simple friction hypothesis used to derive the present ¯ow

Fig. 9. Theoretical and experimental stress ratio and volumetric strain for loose (top) and dense (bottom) Sacramento sand.

Table 4

Material parameters for dense Sacramento sand, e � 0:61

p0 (MPa) G (MPa) k� 102 l� 102 Mc Mu Mf

1.00 67.7 0.74 0.87 1.35 1.55 1.0

1.96 128.1 0.97 1.20 1.38 1.45 1.0

mean 97.9 1.38 1.67 1.37 1.50 1.0
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potential function (Krenk, 1999). A slight di�erence between theory and experiments is observed
regarding the inclination of the ®nal asymptotic line. This can be ascribed to the uncertainty in the
distinction between the parameters k and Mf in standard triaxial test data, and indeed the asymptotic
line in the constant volume test can be used to supply an independent determination of the parameter k
as described in the following.

6.1. The ultimate behaviour in constant volume tests

In the present model the basic characteristics of the stress curves in a constant volume test can be
identi®ed explicitly. When the constant volume condition dev � 0 is inserted into Eq. (19), the following

Fig. 10. Constant volume triaxial compression tests with p0 � 0:3, 0:5, 0:85, 1:27, 2:0 MPa on loose Sacramento sand.

Fig. 11. Constant volume triaxial compression tests with p0 � 1:0, 1:5, 2:0, 3:0 MPa on dense Sacramento sand.
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stress increment relation is obtained.
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It follows from this relation that dp < 0 as long as @g=@p > 0, i.e. as long as ( p, q ) is below the
characteristic line. The minimum value of p is obtained for @g=@p � 0, occurring at the characteristic
line �q=p�c �Mc: After passage of the characteristic line p increases again.

More importantly, the relation (34) can be used to derive a good estimate of the asymptotic
behaviour for large values of ( p, q ). The asymptotic behaviour will be characterized by the ratio
�q=p�i �Mi: It follows from the previous argument that Mi >Mc: A relation between the incompressible
asymptote Mi and the material parameters is obtained as follows. The asymptote is described in terms
of the ratio q=p which in turn is determined by the ratio of the stress increments dq=dp,
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In this relation the elastic bulk modulus Ke � p=k is introduced, leading to the equation
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The expression in parentheses is evaluated from the yield function Eq. (6), by using that except for the
function Z�p� the function f �p, q� is homogeneous of degree three in the stresses,�
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When this result is introduced into Eq. (36) together with H � H1H2 from Eqs. (14) and (18), the
equation takes the form

F�M� � @g=@p
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The parameter Mi of the incompressible asymptote is the root of the equation F�Mi� � 0:
The equation F�Mi� � 0 is non-linear and does not have a simple exact solution. However, a simple

approximate solution can be found from linear interpolation between the values of F�M � at the
characteristic and ultimate lines, F�Mc� > 0 and F�Mu� < 0: These function values are particularly
simple, and as it turns out Mc <Mi <Mu: At the characteristic line @g=@p � 0,

F�Mc� � Z
1
m
c

k
lÿ k

wMc > 0 �39�

At the ultimate line the hardening H � 0 and thereby the term in the parenthesis vanishes. This implies
�@g=@p�=�@g=@q� � ÿw�q=p�u, and thus
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F�Mu� � ÿwMu < 0 �40�

Linear interpolation of the function F�M � between these values gives the root Mi by the relation

Mi ÿMc

Mu ÿMi

� ÿF�Mc �
F�Mu� > 0 �41�

This equation places the incompressible asymptote Mi between the characteristic line Mc and the
ultimate line Mu:

Insertion of the function values and rearrangement of the relation gives the relation in the ®nal form
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In this formula the value of the shape function Z at the characteristic line q=p �Mc follows from the
yield condition f �p, q� � 0,

Zc � 1ÿ 3
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�
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3
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Thus, the ratio between elastic bulk sti�ness and its plastic counterpart has been determined in terms of
the three parameters Mc, Mu and Mi, all observable directly from standard tests. It is seen that for
materials with only a slight change in sti�ness due to plasticity, l ' k, the incompressible asymptote is
close to the ultimate line, Mi 'Mu: Conversely, for materials where plastic deformations are
dominating, l� k, the incompressible asymptote is close to the characteristic line, Mi 'Mc:

6.2. Adjusting the parameters k, G and Mf

In the stress plots in Figs. 10 and 11 the characteristic, ultimate and asymptotic incompressible lines
are given by

s1 � 3� 2M

3ÿM
s3 M �Mc, Mu, Mi �44�

When the parameter Mi is determined from the constant volume data, Eq. (42) gives an equation for the
elastic parameter k, previously determined via an assumed value of Mf : For the dense Sacramento river
sand shown in Fig. 11 Mi � 1:50: This indicates that Mu > 1:50: The most reliable available value of Mu

is from the test with p0 � 1:00 MPa, where Mu � 1:55: When these values of Mi and Mu are used
together with the mean parameters from Table 4, the relation (42) gives the adjusted value k � 0:0088:
The relation (33b) then gives G � 95:6 MPa, and ®nally Mf � 0:97 is found by ®tting the location of the
®nal part of the dilation curve to that obtained from the model for the standard triaxial tests. The
experimental data are compared with model predictions with the adjusted set of parameters in Fig. 12.

The adjustment of the parameters k, G and Mf does not in¯uence the ®t of the standard triaxial data.
In view of the moderate adjustment and the considerable variation of the sti�ness data obtained in
standard triaxial tests the conclusion in the current case is, that the original estimate of the yield surface
parameter Mf by Eq. (25) is quite adequate.
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7. Conclusions

A calibration procedure has been developed for the elasto±plastic model of granular materials
presented by Krenk (1999). This model has a rather small number of parameters, namely the three
sti�ness parameters G, k and l, and the three parameters Mc, Mu and Mf : The calibration procedure is
based on stress and strain data available from a standard triaxial test. Five characteristics of the triaxial
test data are used directly in calibration: the two initial stress±strain ratios at the start of the application
of excess axial stress, the characteristic point of transition from incremental compression to dilation, and
the slope and location of the ®nal asymptotic relation between volumetric and shear strain. In this
procedure it was used, that the ¯ow potential has an apex at the hydrostatic axis, as demonstrated e.g.
by the generalized Coulomb friction theory presented by Krenk (1998). It was demonstrated that the
elastic volume ¯exibility parameter k and the yield function shape parameter Mf are approximately
linearly dependent with respect to the data from a standard triaxial test, and a simple estimate for Mf in
terms of the explicitly calibrated parameters Mc and Mu was proposed.

The model gives an excellent representation of the test data, when calibrated by the proposed
procedure. However, the simple assumptions from the original Cam±Clay theory regarding elastic
properties leads to a systematic change of elastic parameters k and G with the stress level of the test. As
expected, the shear modulus shows an increase with mean stress level, while the tangent bulk modulus
should have an increase which is less than linear in the mean stress. This may easily be incorporated in
the model, e.g. by deriving the elastic properties from a complementary elastic energy, that is a function
of a stress invariant of the form 1

2p
2 � bJ2: This would lead to isotropic secant elastic properties and

tangent properties with stress induced anisotropy. While the elastic parameters would gain validity over
a wider range of stress conditions by such an extension, the more basic issue that the elastic properties
should depend on the plastic deformations, such as changes in void ratio, would require a more
fundamental approach to the representation of elastic deformation.

The elasto-plastic model has also been used to discuss the qualitative behaviour of constant volume
triaxial tests, and to predict speci®c behaviour of constant volume tests on dense and loose sand from a
previous standard calibration. The material behaviour in the test has two stages: ®rst a compression

Fig. 12. Undrained triaxial compression tests at di�erent cell pressure on dense Sacramento sand.
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stage, during which the mean stress decreases, and after reaching the critical state an increase of mean
stress, while approaching a state of proportional increase of the stress components. Also in this case the
representation of the test data is excellent. Furthermore, the theory leads to a simple expression for the
ratio between the stress components in the ®nal asymptotic stage, from which an improved estimate of
the last parameter Mf can be obtained. In the cases investigated the need for an improved value of Mf

was marginal.
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